How are the genes in regulated in a eukaryote i.s. positive and negative regulation

Learning Outcomes

  • Compare prokaryotic and eukaryotic gene regulation

To understand how gene expression is regulated, we must first understand how a gene codes for a functional protein in a cell. The process occurs in both prokaryotic and eukaryotic cells, just in slightly different manners.

Prokaryotic organisms are single-celled organisms that lack a cell nucleus, and their DNA therefore floats freely in the cell cytoplasm. To synthesize a protein, the processes of transcription and translation occur almost simultaneously. When the resulting protein is no longer needed, transcription stops. As a result, the primary method to control what type of protein and how much of each protein is expressed in a prokaryotic cell is the regulation of DNA transcription. All of the subsequent steps occur automatically. When more protein is required, more transcription occurs. Therefore, in prokaryotic cells, the control of gene expression is mostly at the transcriptional level.

Eukaryotic cells, in contrast, have intracellular organelles that add to their complexity. In eukaryotic cells, the DNA is contained inside the cell’s nucleus and there it is transcribed into RNA. The newly synthesized RNA is then transported out of the nucleus into the cytoplasm, where ribosomes translate the RNA into protein. The processes of transcription and translation are physically separated by the nuclear membrane; transcription occurs only within the nucleus, and translation occurs only outside the nucleus in the cytoplasm. The regulation of gene expression can occur at all stages of the process (Figure 1). Regulation may occur when the DNA is uncoiled and loosened from nucleosomes to bind transcription factors (epigenetic level), when the RNA is transcribed (transcriptional level), when the RNA is processed and exported to the cytoplasm after it is transcribed (post-transcriptional level), when the RNA is translated into protein (translational level), or after the protein has been made (post-translational level).

How are the genes in regulated in a eukaryote i.s. positive and negative regulation

Figure 1. Prokaryotic transcription and translation occur simultaneously in the cytoplasm, and regulation occurs at the transcriptional level. Eukaryotic gene expression is regulated during transcription and RNA processing, which take place in the nucleus, and during protein translation, which takes place in the cytoplasm. Further regulation may occur through post-translational modifications of proteins.

The differences in the regulation of gene expression between prokaryotes and eukaryotes are summarized in Table 1. The regulation of gene expression is discussed in detail in subsequent modules.

Table 1. Differences in the Regulation of Gene Expression of Prokaryotic and Eukaryotic Organisms
Prokaryotic organismsEukaryotic organisms
Lack nucleus Contain nucleus
DNA is found in the cytoplasm DNA is confined to the nuclear compartment
RNA transcription and protein formation occur almost simultaneously RNA transcription occurs prior to protein formation, and it takes place in the nucleus. Translation of RNA to protein occurs in the cytoplasm.
Gene expression is regulated primarily at the transcriptional level Gene expression is regulated at many levels (epigenetic, transcriptional, nuclear shuttling, post-transcriptional, translational, and post-translational)

Evolution of Gene Regulation

Prokaryotic cells can only regulate gene expression by controlling the amount of transcription. As eukaryotic cells evolved, the complexity of the control of gene expression increased. For example, with the evolution of eukaryotic cells came compartmentalization of important cellular components and cellular processes. A nuclear region that contains the DNA was formed. Transcription and translation were physically separated into two different cellular compartments. It therefore became possible to control gene expression by regulating transcription in the nucleus, and also by controlling the RNA levels and protein translation present outside the nucleus.

Some cellular processes arose from the need of the organism to defend itself. Cellular processes such as gene silencing developed to protect the cell from viral or parasitic infections. If the cell could quickly shut off gene expression for a short period of time, it would be able to survive an infection when other organisms could not. Therefore, the organism evolved a new process that helped it survive, and it was able to pass this new development to offspring.

Practice Questions

Control of gene expression in eukaryotic cells occurs at which level(s)?

  1. only the transcriptional level
  2. epigenetic and transcriptional levels
  3. epigenetic, transcriptional, and translational levels
  4. epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

Post-translational control refers to the:

  1. regulation of gene expression after transcription
  2. regulation of gene expression after translation
  3. control of epigenetic activation
  4. period between transcription and translation

Try It

Contribute!

Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More

How are the genes regulated in a eukaryote?

Gene expression in eukaryotic cells is regulated by repressors as well as by transcriptional activators. Like their prokaryotic counterparts, eukaryotic repressors bind to specific DNA sequences and inhibit transcription.

What is positive and negative gene regulation?

Positive gene regulation refers to the type of gene regulation that enables the expression of genes, while negative gene regulation refers to the type of gene regulation that prevents the gene expression. Hence, this is the main difference between positive and negative gene regulation.

What is positive regulation in gene regulation?

Term:
positive regulation of gene expression
Definition:
Any process that increases the frequency, rate or extent of gene expression. Gene expression is the process in which a gene's coding sequence is converted into a mature gene product (protein or RNA).
positive regulation of gene expression Gene Ontology Term (GO:0010628)www.informatics.jax.org › vocab › gene_ontologynull

How is the lac operon both positively and negatively controlled?

Regulation of the lac Operon The activity of the promoter that controls the expression of the lac operon is regulated by two different proteins. One of the proteins prevents the RNA polymerase from transcribing (negative control), the other enhances the binding of RNA polymerase to the promoter (positive control).