Đề bài - bài 61 trang 145 sbt toán 7 tập 1

Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = AC.\] Qua \[A\] kẻ đường thẳng \[xy\] [\[B, C\] nằm cùng phía đối với \[xy\]]. Kẻ \[BD\] và \[CE\] vuông góc với \[xy\]. Chứng minh rằng:

Đề bài

Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = AC.\] Qua \[A\] kẻ đường thẳng \[xy\] [\[B, C\] nằm cùng phía đối với \[xy\]]. Kẻ \[BD\] và \[CE\] vuông góc với \[xy\]. Chứng minh rằng:

a] \[BAD = ACE\].

b] \[DE = BD + CE\].

Phương pháp giải - Xem chi tiết

- Trong tam giác vuông hai góc nhọn phụ nhau.

- Nếu cạnh huyền và góc nhọn của tam giác vuông nay bằng cạnh huyền, góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Lời giải chi tiết

a] Ta có: \[\widehat {BA{\rm{D}}} + \widehat {BAC} + \widehat {CA{\rm{E}}} = 180^\circ \]

Mà \[\widehat {BAC} = 90^\circ \left[ {gt} \right] \] \[\Rightarrow \widehat {BA{\rm{D}}} + \widehat {CA{\rm{E}}} = 90^\circ \] [1]

Xét \[AEC\] có \[\widehat {A{\rm{E}}C} = 90^\circ\]

\[ \Rightarrow \widehat {CA{\rm{E}}} + \widehat {AC{\rm{E}}}{\rm{ = 90}}^\circ \] [2]

Từ [1] và [2] suy ra: \[\widehat {BA{\rm{D}}} = \widehat {AC{\rm{E}}}\]

Xét hai tam giác vuông \[AEC\] và \[BDA\], ta có:

\[\widehat {A{\rm{E}}C} = \widehat {B{\rm{D}}A} = 90^\circ \]

\[AC = AB\] [gt]

\[\widehat {AC{\rm{E}}} = \widehat {BA{\rm{D}}}\][chứng minh trên]

\[ \Rightarrow AEC = BDA\] [cạnh huyền, góc nhọn]

b] Ta có: \[AEC = BDA\] [theo câu a]

\[ \Rightarrow AE = BD\;; EC = DA\] [các cạnh tương ứng]

Mà \[DE = DA + AE\]

Vậy \[DE = CE + BD\].

Video liên quan

Chủ Đề