Các bài toán giải bằng biểu đồ ven năm 2024

Bài học cùng chủ đề

CHÚC MỪNG

Bạn đã nhận được sao học tập

Các bài toán giải bằng biểu đồ ven năm 2024

Chú ý:

Thành tích của bạn sẽ được cập nhật trên bảng xếp hạng sau 1 giờ!

Yêu cầu đăng nhập!

Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!

OLM©2022OLM \copyright 2022

Bài viết Cách giải toán bằng biểu đồ Ven với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải toán bằng biểu đồ Ven.

Cách giải toán bằng biểu đồ Ven hay, chi tiết

Phương pháp giải

Quảng cáo

- Vẽ các vòng tròn đại diện các tập hợp (mỗi vòng tròn là một tập hợp) lưu ý 2 vòng tròn có phần chung nếu của 2 tập hợp khác rỗng.

- Dùng các biến để chỉ số phần tử của từng phần không giao nhau.

- Từ giả thiết bài toán, lập hệ phương trình và giải tìm các biến.

Ví dụ minh họa

Ví dụ 1:Trong kì thi học sinh giỏi cấp trường, lớp 10A có 17 bạn được công nhận học sinh giỏi văn, 25 bạn học sinh giỏi toán. Tìm số học sinh đạt cả 2 giải văn và toán, biết lớp 10A có 45 bạn và có 13 bạn không đạt học sinh giỏi.

Lời giải:

Biểu diễn tập hợp các học sinh giỏi văn và các học sinh giỏi toán bằng 2 đường cong kín và tập hợp các học sinh lớp 10A bằng hình chữ nhật như hình bên dưới.

Gọi x là số học sinh giỏi văn không giỏi toán; y là số học sinh giỏi cả văn và toán; z là số học sinh chỉ giỏi toán mà không giỏi văn và t là số học sinh không đạt học sinh giỏi.

Theo biểu đồ giả thiết, ta có:

Cộng (1) với (2) rồi trừ cho (3) ta được:

(x + y) + (y + z) – (x + y + z + t) = 17 + 25 - 45

⇒ y - t = - 3 ⇒ y = t – 3 = 10

Vậy lớp 10A có 10 học sinh giỏi cả 2 môn văn và toán.

Quảng cáo

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Lý thuyết Tập hợp và các phép toán trên tập hợp
  • Dạng 1: Cách xác định tập hợp
  • Dạng 2: Các phép toán trên tập hợp
  • Bài tập Tập hợp và các phép toán trên tập hợp (có đáp án)

Đã có lời giải bài tập lớp 10 sách mới:

  • (mới) Giải bài tập Lớp 10 Kết nối tri thức
  • (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
  • (mới) Giải bài tập Lớp 10 Cánh diều
  • Các bài toán giải bằng biểu đồ ven năm 2024
    Gói luyện thi online hơn 1 triệu câu hỏi đầy đủ các lớp, các môn, có đáp án chi tiết. Chỉ từ 200k!

Săn shopee siêu SALE :

  • Sổ lò xo Art of Nature Thiên Long màu xinh xỉu
  • Biti's ra mẫu mới xinh lắm
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Các bài toán giải bằng biểu đồ ven năm 2024

Các bài toán giải bằng biểu đồ ven năm 2024

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Bài viết hướng dẫn phương pháp giải toán bằng cách sử dụng sơ đồ Ven (được xây dựng bởi nhà toán học John Venn).

Phương pháp giải toán bằng sơ đồ Ven: Gồm 3 bước: + Bước 1: Chuyển bài toán về ngôn ngữ tập hợp. + Bước 2: Sử dụng sơ đồ Ven để minh họa các tập hợp. + Bước 3: Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình, hệ phương trình, từ đó tìm được kết quả bài toán.

Ví dụ minh họa Ví dụ 1: Mỗi học sinh của lớp 10A đều biết chơi cờ tướng hoặc cờ vua, biết rằng có $25$ em biết chơi cờ tướng, $30$ em biết chơi cờ vua, $15$ em biết chơi cả hai. Hỏi lớp 10A có bao nhiêu em chỉ biết chơi cờ tướng? Bao nhiêu em chỉ biết chơi cờ vua? Sĩ số lớp là bao nhiêu?

Các bài toán giải bằng biểu đồ ven năm 2024

Dựa vào sơ đồ Ven ta suy ra số học sinh chỉ biết chơi cờ tướng là $25-15=10$. Số học sinh chỉ biết chơi cờ vua là $30-15=15$. Do đó ta có sĩ số học sinh của lớp 10A là $10+15+15=40$.

Ví dụ 2: Lớp 10B có $45$ học sinh, trong đó có $25$ em thích môn Văn, $20$ em thích môn Toán, $18$ em thích môn Sử, $6$ em không thích môn nào, $5$ em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?

Các bài toán giải bằng biểu đồ ven năm 2024

Gọi: $a,b,c$ theo thứ tự là số học sinh chỉ thích môn Văn, Sử, Toán. $x$ là số học sịnh chỉ thích hai môn là Văn và Toán. $y$ là số học sịnh chỉ thích hai môn là Sử và Toán. $z$ là số học sịnh chỉ thích hai môn là Văn và Sử. Ta có số em thích ít nhất một môn là $45-6=39$. Dựa vào sơ đồ Ven ta có hệ phương trình: $\left\{ \begin{array}{l} a + x + z + 5 = 25(1)\\ b + y + z + 5 = 18(2)\\ c + x + y + 5 = 20(3)\\ x + y + z + a + b + c + 5 = 39(4) \end{array} \right.$ Cộng vế với vế $(1)$, $(2)$, $(3)$ ta có: $a+b+c+2\left( x+y+z \right)+15=63$ $(5).$ Từ $(4)$ và $(5)$ ta có: $a+b+c$ $+2\left( 39-5-a-b-c \right)+15=63$ $\Leftrightarrow a+b+c=20.$ Vậy chỉ có $20$ em thích chỉ một môn trong ba môn trên.

Ví dụ 3: Trong lớp 10C có $16$ học sinh giỏi môn Toán, $15$ học sinh giỏi môn Lý và $11$ học sinh giỏi môn Hóa. Biết rằng có $9$ học sinh vừa giỏi Toán và Lý, $6$ học sinh vừa giỏi Lý và Hóa, $8$ học sinh vừa giỏi Hóa và Toán, trong đó chỉ có $11$ học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp:

  1. Giỏi cả ba môn Toán, Lý, Hóa.
  2. Giỏi đúng một môn Toán, Lý hoặc Hóa.

Các bài toán giải bằng biểu đồ ven năm 2024

Gọi: $T,L,H$ lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa. $B$ là tập hợp học sinh giỏi đúng hai môn. Theo giả thiết ta có: $n\left( T \right) = 16$, $n\left( L \right) = 15$, $n\left( H \right) = 11$, $n\left( B \right) = 11$, $n\left( {T \cap L} \right) = 9$, $n\left( {L \cap H} \right) = 6$, $n\left( {H \cap T} \right) = 8.$

  1. Xét tổng $n(T \cap L)$ $ + n(L \cap H)$ $ + n(H \cap T)$ thì mỗi phần tử của tập hợp $T \cap L \cap H$ được tính ba lần do đó ta có: $n(T \cap L)$ $ + n(L \cap H)$ $ + n(H \cap T)$ $ – 3n\left( {T \cap L \cap H} \right)$ $ = n\left( B \right).$ Hay $n\left( {T \cap L \cap H} \right)$ $ = \frac{1}{3}\left[ {n(T \cap L) + n(L \cap H)} \right.$ $\left. { + n(H \cap T) – n\left( B \right)} \right] = 4.$ Suy ra có $4$ học sinh giỏi cả ba môn Toán, Lý, Hóa.
  2. Xét $n\left( {T \cap L} \right) + n\left( {L \cap T} \right)$ thì mỗi phần tử của tập hợp $T \cap L \cap H$ được tính hai lần do đó số học sinh chỉ giỏi đúng môn Toán là: $n\left( T \right)$ $ – \left[ {n\left( {T \cap L} \right) + n\left( {H \cap T} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 16 – \left( {9 + 8 – 4} \right) = 3.$ Tương tự, ta có: Số học sinh chỉ giỏi đúng môn Lý: $n\left( L \right)$ $ – \left[ {n\left( {T \cap L} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 15 – \left( {9 + 6 – 4} \right) = 4.$ Số học sinh chỉ giỏi đúng môn Hóa: $n\left( H \right)$ $ – \left[ {n\left( {H \cap T} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 11 – \left( {8 + 6 – 4} \right) = 1.$ Suy ra số học sinh giỏi đúng một môn Toán, Lý hoặc Hóa là: $3 + 4 + 1 = 8.$