Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Sở dĩ người ta gọi là tầng emitơ chung là vì nếu xét về mặt xoay chiều thì tín hiệu đầu vào và đầu ra đều có chung một chất đất là cực E của tranzito.

Trong sơ đồ này Cp1, Cplà các tụ nối tầng, nó ngăn cách điện áp một chiều tránh ảnh hưởng lẫn nhau, R1, R2, RC để xác định chế độ tĩnh của tầng khuếch đại.

Rđiện trở hồi tiếp âm dòng điện một chiều có tác dụng ổn định nhiệt, CE tụ thoát thành phần xoay chiều xuống đất ngăn hồi tiếp âm xoay chiều.

Đặc điểm của tầng khuếch đại EC là tầng khuếch đại đảo pha, tín hiệu ra ngược pha với tín hiệu vào.

Nguyên lý làm việc của tầng EC như sau: khi đưa điện áp xoay chiều tới đầu vào xuất hiện dòng xoay chiều cực B của tranzito và do đó xuất hiện dòng xoay chiều cực C ở mạch ra của tầng. Dòng này gây sụt áp xoay chiều trên điện trở RC. Điện áp đó qua tụ CP2đưa đến đầu ra của tầng tức là tới Rt. Có thể thực hiện bằng hai phương pháp cơ bản là phương pháp đồ thị đối với chế độ một chiều và phương pháp giải tích dùng sơ đồ tương đương đối với chế độ xoay chiều tín hiệu nhỏ.

Phương pháp đồ thị dựa vào đặc tuyến vào và ra của tranzito có ưu điểm là dễ dàng tìm được mối quan hệ giữa các giá trị biên độ của thành phần xoay chiều (điện áp ra Ûm và dòng điện ra Îr) và là số liệu ban đầu để tính toán. Trên đặc tuyến hình (2-7a), vẽ đường tải một chiều (a-b). Sự phụ thuộc UCE0 = f(IC0) có thể tìm được từ phương trình cân bằng điện áp ở mạch ra của tầng: UCE0=EC-IC0.RC-I­E0RE=EC-IC0RC

 - RE

Vì hệ số α gần đúng 1, nên có thể viết UCE0 = EC - IC0 (RC+RE)

Dựa vào đặc tuyến vào IB= f (UBE) ta chọn dòng cực gốc tĩnh cần thiết IB0, chính là xác định được toạ độ điểm P là giao điểm của đường IB = IB0 với đường tải một chiều trên đặc tuyến ra ở hình 2-7b.

Để xác định thành phần xoay chiều của điện áp ra và dòng ra cực C của tranzito phải dùng đường tải xoay chiều của tầng. Chú ý rằng điện trở xoay chiều trong mạch cực E của tranzito bằng không (vì có tụ CE mắc song song với điện trở RE) còn tải Rt được mắc vào mạch cực C, vì điện trở xoay chiều của tụ C2 rất nhỏ.

Nếu coi điện trở xoay chiều của nguồn cung cấp EC bằng không, thì điện trở xoay chiều của tầng gồm hai điện trở RC và Rt mắc song song, nghĩa là Rt~ =Rt // RC. Từ đó thấy rõ điện trở tải một chiều của tầng Rt= = RC + RE lớn hơn điện trở tải xoay chiều Rt~. Khi có tín hiệu vào, điện áp và dòng điện là tổng của thành phần một chiều và xoay chiều, đường tải xoay chiều đi qua điểm tĩnh P.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Độ dốc của đường tải xoay chiều lớn hơn độ dốc đường tải một chiều. Xây dựng đường tải xoay chiều theo tỷ số số gia của điện áp và dòng điệnΔUCE =ΔIC.(RC // Rt). Khi cung cấp điện áp vào tới đầu vào của tầng thì trong mạch cực gốc xuất hiện thành phần dòng xoay chiều ib liên quan đến điện vào uv theo đặc tuyến vào của tranzito.Vì dòng IC=βIB nên trên mạch cực C cũng có thành phần dòng xoay chiều iC và điện áp xoay chiều ura liên hệ với iC bằng đường tải xoay chiều. Khi đó đường tải xoay chiều đặc trưng cho sự thay đổi giá trị tức thời dòng cực C iC và điện áp trên tranzito uc hay người ta nói đó là sự dịch chuyển điểm làm việc. Điểm làm việc dịch từ P đi lên ứng với 1/2 chu kỳ dương và dịch chuyển đi xuống ứng với 1/2chu kỳ âm của tín hiệu vào. Nếu chọn trị số tín hiệu vào thích hợp và chế độ tĩnh đúng thì tín hiệu ra của tầng khuếch đại không bị méo dạng. Việc chọn điểm làm việc tĩnh và tính toán sẽ được thực hiện theo một tầng khuếch đại cụ thể. Những tham số ban đầu để tính toán là biên độ điện áp ra Ûr và dòng điện tải Ît , công suất tải Pt và điện trở tải Rt. Giữa những tham số này có quan hệ chặt chẽ với nhau, nên về nguyên tắc chỉ cần biết hai trong những tham số đó là đủ để tính các tham số còn lại.

Để tính toán theo phương pháp giải tích dùng sơ đồ tương đương đối với chế độ xoay chiều tín hiệu nhỏ.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Các tham số của mạch EC tính gần đúng như sau:

+ Điện trở vào của tầng: RV=R1// R2 // rV ; rV= rB + (1+β).rE.

+ Hệ số khuếch đại dòng điện: 

Như vậy tầng EC có hệ số khuếch đại dòng tương đối lớn, và nếu như RC>> Rt thì nó gần bằng hệ số khuếch đại β của tranzito.

+ Hệ số khuếch đại điện áp: 

 (dấu trừ thể hiện sự đảo pha)

+ Hệ số khuếch đại công suất 

; rất lớn khoảng từ (0,2  5).103 lần

+ Điện trở ra của tầng. Rr=RC // r(E); Vì rC(E) >> RC nên Rr = RC.

Tầng EC có hệ số khuếch đại điện áp và dòng điện lớn nên thường được sử dụng nhiều.

Điện trở RE trong sơ đồ đóng vai trò như RC trong mạch EC, nghĩa là tạo nên một điện áp biến đổi ở đầu ra trên nó. Tụ C có nhiệm vụ đưa tín hiệu ra tải Rt. Điện trở R1, R2 là bộ phân áp cấp điện một chiều cho cực B, xác định chế độ tĩnh của tầng. Để tăng điện trở vào thường người ta không mắc điện trở R2. Tính toán chế độ một chiều tương tự như tính toán tầng EC. Để khảo sát các tham số của tầng theo dòng xoay chiều, cần chuyển sang sơ đồ tương đương xoay chiều.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Các tham số:

+ Điện trở vào của tầng: R≈ R// R2 // (1+β).(R// Rt)

Nếu chọn bộ phân áp đầu vào R1, R2 lớn thì điện trở vào sẽ lớn. Tuy nhiên khi đó không thể bỏ qua điện trở rC(E) mắc song song với mạch vào, nên điện trở vào phải tính:

R= R// R2 // [(1+β).(R// Rt) ]//rE(E)

Điện trở vào lớn là một trong những ưu điểm quan trọng của tầng C chung, dùng làm tầng phối hợp với nguồn tín hiệu có điện trở trong lớn.

+ Hệ số khuếch đại dòng điện:

  

)

 

.

  

.

 

 

+ Hệ số khuếch đại điện áp:

  

)

 

.

 

 

Khi RV >> Rn và gần đúng R≈ (1+β).(R+ Rt) thì Ku≈ 1. Như vậy tầng khuếch đại C chung để khuếch đại công suất tín hiệu trong khi giữ nguyên trị số điện áp của nó.

Vì K= 1 nên hệ số khuếch đại Kp xấp xỉ bằng Ki về trị số.

+ Điện trở ra của tầng: 

//

(

//

Điện trở ra của tầng nhỏ cỡ (150). Nó được dùng để phối hợp mạch ra của tầng khuếch đại với tải có điện trở nhỏ, khi đó tầng C chung dùng làm tầng ra của bộ khuếch đại có vai trò như một tầng khuếch đại công suất đơn chế độ A không có biến áp ra.

Các phần tử R1, R2, RE dùng để xác định chế độ tĩnh IE. Các phần tử còn lại cũng có chức năng giống sơ đồ mạch EC.

+ Điện trở vào: R= R//[r+ ( 1─ α)rB]

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Điện trở vào của tầng được xác định chủ yếu bằng điện trở rE vào khoảng (1050). Điện trở vào nhỏ là nhược điểm cơ bản của tầng BC vì tầng đó sẽ là tải lớn đối với nguồn tín hiêụ vào.

+ Hệ số khuếch đại dòng của tầng: 

+ Hệ số khuếch đại điện áp: 

+ Điện trở ra của tầng: Rr = RC // rC(E) ≈ RC .

Cần chú ý rằng đặc tuyến tĩnh của tranzito mắc BC có độ tuyến tính lớn nên tranzito có thể dùng với điện áp cực C lớn hơn sơ đồ EC. Chính vì vậy tầng khuếch đại BC được dùng khi cần có điện áp ở đầu ra lớn.

    Mạch khuếch đại là mạch được sử dụng trong hầu hết các thiết bị điện tử, như mạch khuếch đại âm tần trong Cassete, Âmply, Khuếch đại tín hiệu video trong Ti vi mầu  v.v …

Phân loại mạch khuếch đại

  • Khuếch đại về điện áp : Là mạch khi ta đưa một tín hiệu có biên độ nhỏ vào, đầu ra ta sẽ thu được một tín hiệu có biên độ lớn hơn nhiều lần.
  • Mạch khuếch đại về dòng điện : Là mạch khi ta đưa một tín hiệu có cường độ yếu vào, đầu ra ta sẽ thu được một tín hiệu cho cường độ dòng điện mạnh hơn nhiều lần.
  • Mạch khuếch đại công xuất : Là mạch khi ta đưa một tín hiệu có công xuất yếu vào , đầu ra ta thu được tín hiệu có công xuất mạnh hơn nhiều lần, thực ra mạch khuếch đại công xuất là kết hợp cả hai mạch khuếch đại điện áp và khuếch đại dòng điện làm một.

Các chế độ hoạt động của mạch khuyếch đại.

     Các chế độ hoạt động của mạch khuếch đại  là phụ thuộc vào chế độ phân cực cho Transistor, tuỳ theo mục đích sử dụng mà mạch khuếch đại được phân cực để khuếch đại ở chế độ A,  chế độ B , chế độ AB hoặc chế độ C

a) Mạch khuếch đại ở chế độ A.
 Là các mạch khuếch đại cần lấy ra tín hiệu hoàn toàn giốn với tín hiệu ngõ vào.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuyếch đại chế độ A  khuyếch đại cả hai bán chu kỳ tín hiệu ngõ vào

     *  Để Transistor hoạt động ở chế độ A, ta phải định thiên sao cho  điện áp    UCE  ~  60% ÷ 70% Vcc.
* Mạch khuyếch đại ở chế độ A  được sử dụng trong các mạch trung gian như khuếch đại cao tần, khuếch đại trung tần, tiền khuếch đại v v..

b) Mach khuếch đại ở chế độ B.
Mạch khuếch đại chế độ B là mạch chỉ khuếch đại một nửa chu kỳ của tín hiệu, nếu khuếch đại bán kỳ dương ta dùng transistor NPN, nếu khuếch đại bán kỳ âm ta dùng transistor PNP, mạch khuyếch đại ở chế độ B không có định thiên.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuyếch đại ở chế độ B chỉ khuếch đại một bán chu kỳ của tín hiệu ngõ vào.

     * Mạch khuếch đại chế độ B thường được sử dụng trong các mạch khuếch đại công xuất đẩy kéo như công xuất âm tần, công xuất mành của Ti vi, trong các mạch công xuất đẩy kéo , người ta dùng hai đèn NPN và PNP mắc nối tiếp , mỗi đèn sẽ khuếch đại một bán chu kỳ của tín hiệu, hai đèn trong mạch khuếch đại đẩy kéo phải có các thông số kỹ thuật như nhau :

   * Mạch khuếch đại công xuất kết hợp cả hai chế độ A và B .

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuếch đại công xuất Âmply có : Q1 khuếch đại ở chế độ A, Q2 và Q3 khuếch đại ở chế độ B, Q2 khuếch đại

cho bán chu kỳ dương, Q3 khuếch đại cho bán chu kỳ âm.

c) Mạch khuếch đại ở chế độ AB.
Mạch khuếch đại ở chế độ AB là mạch tương tự khuếch đại ở chế độ B , nhưng có định thiện sao cho điện áp UBE sấp sỉ 0,6 V, mạch cũng chỉ khuếch đại một nửa chu kỳ tín hiệu và khắc phục hiện tượng méo giao điểm của mạch khuếch đại chế độ B, mạch này cũng được sử dụng trong các mạch công xuất đẩy kéo .

d) Mạch khuếch đại ở chế độ C
Là mạch khuếch đại  có điện áp UBE được phân cự ngược với mục đích chỉ lấy tín hiệu đầu ra là một phần đỉnh của tín hiệu đầu vào,  mạch này thường sử dụng trong các mạch tách tín hiệu : Thí dụ mạch tách xung đồng bộ trong ti vi mầu.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Ứng dụng mạch khuyếch đại chế độ C trong
mạch tách xung đồng bộ Ti vi mầu.

Các kiểu mắc của Transistor

– Transistor mắc theo kiểu E chung.

     Mạch mắc theo kiểu E chung có cực E đấu trực tiếp xuống mass hoặc đấu qua tụ xuống mass để thoát thành phần xoay chiều, tín hiệu đưa vào cực B và lấy ra trên cực C,  mạch có sơ đồ như sau :

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuyếch đại điện áp mắc kiểu E chung ,
Tín hiệu đưa vào cực B và lấy ra trên cực C

Rg : là điện trở ghánh , Rđt : Là điện trở
định thiên, Rpa : Là điện trở phân áp .

      Đặc điểm của mạch khuếch đại E chung.

  •  Mạch khuếch đại E chung thường được định thiên sao cho điện áp UCE khoảng 60% ÷ 70 %  Vcc.
  • Biên độ tín hiệu ra thu được lớn hơn biên độ tín hiệu vào nhiều lần, như vậy mạch khuếch đại về điện áp.
  • Dòng điện tín hiệu ra lớn hơn dòng tín hiệu vào nhưng không đáng kể.
  • Tín hiệu đầu ra ngược pha với tín hiệu đầu vào : vì khi điện áp tín hiệu vào tăng => dòng IBE tăng => dòng ICE tăng => sụt áp trên Rg tăng => kết quả là điện áp chân C giảm , và ngược lại khi điện áp đầu vào giảm thì điện áp chân C lại tăng  => vì vậy điện áp đầu ra ngược pha với tín hiệu đầu vào.
  • Mạch mắc theo kiểu E chung như trên được ứng dụng nhiều nhất trong thiết bị điện tử.

– Transistor mắc theo kiểu C chung.

   Mạch mắc theo kiểu C chung có chân C đấu vào mass hoặc dương nguồn ( Lưu ý : về phương diện xoay chiều thì dương nguồn tương đương với mass ) , Tín hiệu được đưa vào cực B và lấy ra trên cực E , mạch có sơ đồ như sau :

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch mắc kiểu C chung , tín hiệu đưa
vào cực B và lấy ra trên cực E

       Đặc điểm của mạch khuếch đại C chung .

  • Tín hiệu đưa vào cực B và lấy ra trên cực E
  • Biên độ tín hiệu ra bằng biên độ tín hiệu vào : Vì mối BE luôn luôn có giá trị khoảng 0,6V do đó khi điện áp chân B tăng bao nhiêu thì áp chân C cũng tăng bấy nhiêu => vì vậy biên độ tín hiệu ra bằng biên độ tín hiệu vào .
  • Tín hiệu ra cùng pha với tín hiệu vào : Vì khi điện áp vào tăng => thì điện áp ra cũng tăng, điện áp vào giảm thì điện áp ra cũng giảm.
  • Cường độ của tín hiệu ra mạnh hơn cường độ của tín hiệu vào nhiều lần :  Vì khi tín hiệu vào có biên độ tăng => dòng IBE sẽ tăng  => dòng ICE cũng tăng gấp β lần dòng IBE vì
    ICE =  β.IBE   giả sử Transistor có hệ số khuyếch đại β = 50 lần thì khi dòng IBE tăng 1mA => dòng ICE sẽ tăng 50mA, dòng ICE chính là dòng của tín hiệu đầu ra, như vậy tín hiệu đầu ra có cường độ dòng điện mạnh hơn nhiều lần so với tín hiệu vào.
  • Mạch trên  được ứng dụng nhiều trong các mạch khuếch đại đêm (Damper), trước khi chia tín hiệu làm nhiều nhánh , người ta thường dùng mạch Damper để khuếch đại cho tín hiệu khoẻ hơn . Ngoài ra mạch còn được ứng dụng rất nhiều trong các mạch ổn áp nguồn ( ta sẽ tìm hiểu trong phần sau )

– Transistor mắc theo kiểu B chung.

  • Mạch mắc theo kiểu B chung có tín hiệu đưa vào chân E và lấy ra trên chân C , chân B được thoát mass thông qua tụ.
  • Mach mắc kiểu B chung rất ít khi được sử dụng trong thực tế.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuếch đại kiểu B chung , khuếch
đại về điện áp và không khuếch đại về dòng điện.

Các kiểu ghép tầng

– Ghép tầng qua tụ điện.

        * Sơ đồ mạch ghép tầng qua tụ điện

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuyếch đại đầu từ – có hai tầng khuyếch
đại được ghép với nhau qua tụ điện.

  • Ở trên là sơ đồ mạch khuếch đại đầu từ trong đài Cassette, mạch gồm hai tầng khuếch đại mắc theo kiểu E chung, các tầng được ghép tín hiệu thông qua tụ điện, người ta sử dụng các tụ  C1 , C3 , C5  làm tụ nối tầng cho tín hiệu xoay chiều đi qua và ngăn áp một chiều lại, các tụ C2 và C4 có tác dụng thoát thành phần xoay chiều từ chân E xuống mass, C6 là tụ lọc nguồn.
  • Ưu điểm của mạch là đơn giản, dễ lắp do đó mạch được sử dụng rất nhiều trong thiết bị điện tử, nhược điểm là không khai thác được hết khả năng khuếch đại của Transistor do đó hệ số khuếch đại không lớn.
  • Ở trên là mạch khuếch đại âm tần, do đó các tụ nối tầng thường dùng tụ hoá có trị số từ 1µF ÷ 10µF.
  • Trong các mạch khuếch đại cao tần thì tụ nối tầng có trị số nhỏ khoảng vài nanô Fara.

– Ghép tầng qua biến áp .

   * Sơ đồ mạch trung tần tiếng trong Radio sử dụng biến áp ghép tầng

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Tầng Trung tần tiếng của Radio sử dụng biến áp ghép tầng.

  • Ở trên là sơ đồ mạch trung tần Radio sử dụng các biến áp ghép tầng, tín hiệu đầu ra của tầng này được ghép qua biến áp để đi vào tầng phía sau.
  • Ưu điểm của mạch là phối hợp được trở kháng giữa các tầng do đó khai thác được tối ưu hệ số khuếch đại , hơn nữa cuộn sơ cấp biến áp có thể đấu song song với tụ để cộng hưởng khi mạch khuếch đại ở một tần số cố định.
  • Nhược điểm : nếu mạch hoạt động ở dải tần số rộng thì gây méo tần số, mạch chế tạo phức tạp và chiếm nhiều diện tích.

– Ghép tầng trực tiếp .

   * Kiểu ghép tầng trực tiếp thường được dùng trong các mạch khuếch đại công xuất âm tần.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuếch đại công xuất âm tần có đèn đảo pha Q1
được ghép trực tiếp với hai đèn công xuất Q2 và Q3.

Phương pháp kiểm tra một tầng khuếch đại

– Trong các mạch khuếch đại ( chế độ A )  thì phân cực như thế nào là đúng.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuyếch đại được phân cực đúng.

  • Mạch khuếch đại ( chế độ A) được phân cực đúng là mạch có
    UBE ~ 0,6V  ;   UCE ~ 60%  ÷ 70% Vcc
  • Khi mạch được phân cực đúng ta thấy , tín hiệu ra có biên độ lớn nhất và không bị méo tín hiệu .

–  Mạch khuếch đại ( chế độ A ) bị phân cực sai.

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuếch đại bị phân cực sai, điện áp UCE quá thấp .

Trong mạch khuếch đại tín hiệu điện trở dòng RE có công thức tính

Mạch khuếch đại bị phân cực sai, điện áp UCE quá cao .

  • Khi mạch bị phân cực sai ( tức là UCE quá thấp hoặc quá cao ) ta thấy rằng tín hiệu ra bị méo dạng, hệ số khuếch đại của mạch bị giảm mạnh.
  • Hiện tượng méo dạng trên sẽ gây hiện tượng âm thanh bị rè hay bị nghẹt ở các mạch khuếch đại âm tần.

     Phương pháp kiểm tra một tầng khuếch đại.

  • Một tầng khuếch đại nếu ta kiểm tra thấy UCE quá thấp so với nguồn  hoặc quá cao sấp sỉ bằng nguồn => thì tầng khuếch đại đó có vấn đề.
  • Nếu UCE quá thấp thì có thể do chập CE( hỏng Transistor) , hoặc đứt Rg.
  • Nếu UCE quá cao ~ Vcc thì có thể đứt Rđt hoặc hỏng Transistor.
  • Một tầng khuyếch đại còn tốt thông thường có  :
     UBE ~ 0,6V  ;   UCE ~ 60%  ÷ 70% Vcc