So sánh phép vị tự và phép đồng dạng

1. Phép biến hình

- Điểm \[M'\] gọi là ảnh của điểm \[M\] qua phép biến hình \[F\] , hay \[M\] là điểm tạo ảnh của điểm \[M'\], kí hiệu \[M' = f\left[ M \right]\]

- Nếu \[\left[ H \right]\] là một hình nào đó thì \[\left[ {H'} \right]\] gồm các điểm \[M'\] là ảnh của \[M \in {\rm H}\] được gọi là ảnh của \[\left[ {\rm H} \right]\] qua phép biến hình \[F\] .

- Phép biến hình biến mỗi điểm M thành chính nó được gọi là phép đồng nhất.

2. Phép tịnh tiến

a. Định nghĩa

\[{T_{\overrightarrow v }}[M] = M' \Leftrightarrow \overrightarrow {MM'}  = \overrightarrow v \]

b. Tính chất

- Nếu phép tịnh tiến biến hai điểm \[M,N\] thành hai điểm \[M',N'\] thì \[\overrightarrow {M'N'}  = \overrightarrow {MN} \] , từ đó suy ra \[M'N' = MN\]

- Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

- Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó, đường tròn thành đường tròn có cùng bán kính.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ $\left[ {Oxy} \right]$ cho vectơ \[\overrightarrow v  = \left[ {a;b} \right],M\left[ {x;y} \right]\].

Khi đó phép tịnh tiến theo vectơ \[\overrightarrow v :{T_{\overrightarrow v }}[M] = M'\left[ {x';y'} \right]\] có biểu thức tọa độ: \[\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\]

3. Phép đối xứng trục

a. Định nghĩa

Phép đối xứng qua một đường thẳng \[a\] là phép biến hình biến điểm \[M\] thành điểm \[M'\] đối xứng với \[M\] qua đường thẳng \[a\]. Kí hiệu : ${D_a}$ [\[a\]là trục đối xứng]

b. Tính chất

+] \[{D_a}\left[ M \right] = M' \Leftrightarrow \overrightarrow {{M_0}M'}  =  - \overrightarrow {{M_0}M} \] với \[{M_0}\] là hình chiếu của \[M\] trên \[a\].

+] \[{D_a}\left[ M \right] = M \Leftrightarrow M \in a\]

+] \[{D_a}\left[ M \right] = M' \Leftrightarrow {D_a}\left[ {M'} \right] = M\], \[a\] là trung trực của đoạn \[MM'\].

- Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ.

- Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

- Phép đối xứng trục biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \[Oxy\]: \[{D_a}:M\left[ {x;y} \right] \to M'\left[ {x';y'} \right]\]

- Nếu \[a \equiv Ox \Rightarrow \left\{ \begin{array}{l}x = x'\\y =  - y'\end{array} \right.\]

- Nếu \[a \equiv Oy \Rightarrow \left\{ \begin{array}{l}x =  - x'\\y = y'\end{array} \right.\]

4. Phép đối xứng tâm

a. Định nghĩa

Cho điểm \[I\]. Phép biến hình biến điểm \[I\] thành chính nó, biến mỗi điểm \[M\] khác \[I\] thành \[M'\] sao cho \[I\] là trung điểm \[MM'\] được gọi là phép đối xứng tâm \[I\]. Kí hiệu: \[{D_I}\] [\[I\] là tâm đối xứng]

\[{D_I}\left[ M \right] = M' \Leftrightarrow \overrightarrow {IM'}  =  - \overrightarrow {IM} \]

b. Tính chất

- Nếu \[{D_I}\left[ M \right] = M'\] và \[{D_I}\left[ N \right] = N'\] thì \[\overrightarrow {M'N'}  =  - \overrightarrow {MN} \] , từ đó suy ra \[M'N' = MN\]

- Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nóm biến đường tròn thành đường tròn có cùng bán kính.

- Phép đối xứng tâm biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

- Phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kì.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \[Oxy\], cho \[{I_0}\left[ {{x_0};{y_0}} \right]\], gọi \[M\left[ {x;y} \right]\] và \[M'\left[ {x';y'} \right]\] với \[{D_I}\left[ M \right] = M' \Rightarrow \left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\]

5. Phép quay

a. Định nghĩa

Trong mặt phẳng cho điểm $O$ cố định và góc lượng giác $\alpha $ không đổi. Phép biến hình biến mỗi điểm \[M\]

thành điểm $M'$ sao cho $OM = OM'$ và $\left[ {OM,OM'} \right] = \alpha $ được gọi là phép quay tâm $O$ góc quay $\alpha $.

Kí hiệu: ${Q_{\left[ {O,\alpha } \right]}}$[$O$ là tâm phép quay, $\alpha $ là góc quay lượng giác].

${Q_{\left[ {O,\alpha } \right]}}\left[ M \right] = M' \Leftrightarrow \left\{ \begin{array}{l}OM = OM'\\\left[ {OM,OM'} \right] = \alpha \end{array} \right.$

b. Tính chất

- Chiều dương của phép quay là chiều dương của đường tròn lượng giác [chiều kim đồng hồ].

- Với $k \in \mathbb{Z}$ ta luôn có: ${Q_{\left[ {O,2k\pi } \right]}}$ là phép đồng nhất; ${Q_{\left[ {O,\left[ {2k + 1} \right]\pi } \right]}}$ là phép đối xứng tâm.

- Phép quay bảo toàn khoảng cách giữa hai điểm bất kì.

- Phép quay biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

- Phép quay biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự.

c. Biểu thức tọa độ

$\left\{ \begin{array}{l}x' - {x_0} = \left[ {x - {x_0}} \right]\cos \varphi  - \left[ {y - {y_0}} \right]\sin \varphi \\y' - {y_0} = \left[ {x - {x_0}} \right]\sin \varphi  + \left[ {y - {y_0}} \right]\cos \varphi \end{array} \right.$

Đặc biệt:

+] $\varphi  = 90^\circ  \Rightarrow \left\{ \begin{array}{l}x' =  - y\\y' = x\end{array} \right.$

+] Nếu $\varphi  =  - 90^\circ  \Rightarrow \left\{ \begin{array}{l}x' = y\\y' =  - x\end{array} \right.$

+] Nếu $\varphi  = 180^\circ  \Rightarrow \left\{ \begin{array}{l}x' =  - x\\y' =  - y\end{array} \right.$

6. Phép vị tự

a. Định nghĩa

Cho điểm $O$ cố định và số $k \ne 0$ không đổi. Phép biến hình biến mỗi điểm $M$ thành điểm \[M'\] sao cho \[\overrightarrow {OM'}  = k\overrightarrow {OM} \] được gọi là phép vị tự tâm $O,$ tỉ số $k.$

Kí hiệu: \[{V_{\left[ {O,k} \right]}}\] [$O$ là tâm vị tự, $k$ là tỉ số vị tự]

\[{V_{\left[ {o,k} \right]}}\left[ M \right] = M' \Leftrightarrow \overrightarrow {OM'}  = k\overrightarrow {OM} \]

b. Tính chất

- Nếu phép vị tự tỉ số k biến hai điểm $M, N$ tùy ý theo thứ tự thành \[M',\,N'\] thì

\[\overrightarrow {M'N'}  = k\overrightarrow {MN} \] và \[M'N' = \left| k \right|MN\].

- Phép vị tự tỉ số $k:$

+ Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa chúng.

+ Biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.

+ Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc bằng nó.

+ Biến đường tròn bán kính ${\rm{R}}$ thành đường tròn có bán kính $\left| k \right|.R$

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \[Oxy\] cho phép vị tự ${V_{\left[ {I,k} \right]}}$ tâm $I\left[ {{x_0};{y_0}} \right]$ biến điểm \[M\left[ {x;y} \right]\] thành \[M'\left[ {x';y'} \right]\].

Khi đó \[\left\{ \begin{array}{l}x' = kx + \left[ {1 - k} \right]{x_0}\\y' = ky + \left[ {1 - k} \right]{y_0}\end{array} \right.\]

7. Phép đồng dạng

a. Định nghĩa

Một phép biến hình \[F\] được gọi là phép đồng dạng tỉ số \[k\,\,\,\left[ {k > 0} \right]\] nếu với hai điểm bất kỳ \[M,N\] và ảnh \[M',N'\] tương ứng của chúng ta luôn có \[M'N' = kMN.\]

Nhận xét:

- Phép dời hình là phép đồng dạng tỉ số \[k = 1\].

- Phép vị tự tỉ số \[k\] là phép đồng dạng tỉ số \[\left| k \right|\].

- Nếu thực hiện liên tiếp hai phép đồng dạng thì ta được một phép đồng dạng.

b. Tính chất

- Phép đồng dạng tỉ số \[k\]:

+ Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toán thứ tự giữa chúng.

+ Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.

+ Biến một tam giác thành tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng nó.

+ Biến một đường tròn bán kính \[R\] thành đường tròn bán kính \[\left| k \right|.R\].

8. Phép dời hình và hai hình bằng nhau

- Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ.

- Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia.

Lý thuyết tóm tắt cơ bản và bài tập tiêu biểu về phép quay

Lý thuyết tóm tắt cơ bản và bài tập tiêu biểu về phép quay

PHÉP ĐỒNG DẠNG

A. Lý thuyết

1. Định nghĩa

Một phép biến hình F được gọi là phép biến hình tỉ số k [k > 0] nếu với hai điểm bất kì M, N và ảnh ${{M}^{'}},{{N}^{'}}$ tương ứng của chúng ta luôn có ${{M}^{'}}{{N}^{'}}=k.MN$ .

Nhận xét:

  • Phép dời hình là phép đồng dạng tỉ số $k=1$
  • Phép vị tự tỉ số k là phép đồng dạng tỉ số $\left| k \right|$
  • Nếu thực hiện liên tiếp hai phép đồng dạng thì ta được một phép đồng dạng

2. Tính chất

Phép đồng dạng tỉ số k:

  1. Biến ba điểm thẳng hang thành ba điểm thẳng hang và bảo toàn thứ tự giữa chúng
  2. Biến một đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng
  3. Biến một tam giác thành tam giác dồng dạng với tam gaisc đã cho, biến góc thành góc bằng nó
  4. Biến mộ đường tròn bán kính R thành đường tròn bán kính $k.R$

3. Hình đồng dạng

Hai hình được gọi là hình đồng dạng với nhau nếu có moọt phép đồng dạng biến hình  này thành hình kia

B. Bài tập minh họa

Câu 1 : Trong các mệnh đề sau mệnh đề nào sai?

A. Hai đường thẳng baatss kì luôn đồng dạng                         

B. Hai dường tròn bất kì luôn đồng dạng                       

C. Hai hình vuông bất kì luôn đồng dạng                      

D. Hai hình chữ nhật bất kì luôn đồng dạng

Giải:

Với hai hình chữ nhật bất kì ta chọn từng cặp cạnh tương ứng, khi đó tỉ lệ giữa chúng chưa chắc đãn bằng nhau

$\Rightarrow $ Không tồn tại phép đồng dạng biến hình chữ nhật này thành hình chứ nhật kia

Chọn D

Câu 2 : Cho tam giác \[ABC\] và \[A'B'C'\] đồng dạng với nhau theo tỉ số \[k\]. Mệnh đề nào sau đây là sai?

A. \[k\] là tỉ số hai trung tuyến tương ứng                       

B. \[k\] là tỉ số hai đường cao tương ứng                        

C. \[k\] là tỉ số hai góc tương ứng                         

D. \[k\]là tỉ số hai bán kính đường tròn ngoại tiếp tương ứng

Giải:

Vì hai tam giác đồng dạng thì các góc tương ứng luôn bằng nhau

Chọn C

Câu 3: Trong mặt phẳng tọa độ \[Oxy\] cho điểm $M\left[ 2;4 \right].$ Phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm $O$ tỉ số $k=\frac{1}{2}$ và phép đối xứng qua trục $Oy$ sẽ biến $M$ thành điểm nào trong các điểm sau:

A.$\left[ 1;2 \right]$                 B.$\left[ -2;4 \right]$                          C.$\left[ -1;2 \right]$                          D.$\left[ 1;-2 \right]$

Giải:

Gọi 

Chọn C

Câu 4: Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $d$ có phương trình $x+y-2=0.$ Viết phương trình đường thẳng $d'$ là ảnh của $d$ qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm $I\left[ -1;-1 \right]$ tỉ số $k=\frac{1}{2}$ và phép quay tâm $O$ góc $-{{45}^{0}}.$

A.$y=0.$                        B.$x=0.$                        C.$y=x.$                        D.$y=-x.$

Giải:

Gọi ${{d}_{1}}$ là ảnh của $d$ qua phép vị tự tâm $I\left[ -1;-1 \right]$ tỉ số $k=\frac{1}{2}.$

Vì ${{d}_{1}}$ song song hoặc trùng với $d$ nên phương trình của nó có dạng $x+y+c=0.$

Lấy $M\left[ 1;1 \right]$ thuộc $d.$

Gọi 

Vậy phương trình của ${{d}_{1}}$ là $x+y=0.$

Ảnh của ${{d}_{1}}$ [đường phân giác góc phần tư thứ hai] qua phép quay tâm $O$ góc $-{{45}^{0}}$ là đường thẳng $Oy.$ Vậy phương trình của $d'$ là $x=0.$

Chọn B

Câu 5: Trong mặt phẳng tọa độ $Oxy$ cho đường tròn $\left[ C \right]$ có phương trình ${{\left[ x-2 \right]}^{2}}+{{\left[ y-2 \right]}^{2}}=4.$ Phép đồng dạng có được bằng cách thực hiện liên tiếp các phép vị tự có tâm $O$ tỉ số $k=\frac{1}{2}$ và phép quay tâm $O$ góc ${{90}^{0}}$ sẽ biến $\left[ C \right]$ thành đường tròn nào trong các đường tròn sau?

A. ${{\left[ x-2 \right]}^{2}}+{{\left[ y-2 \right]}^{2}}=1.$    B. ${{\left[ x-1 \right]}^{2}}+{{\left[ y-1 \right]}^{2}}=1.$           

C. ${{\left[ x+2 \right]}^{2}}+{{\left[ y-1 \right]}^{2}}=1.$   D. ${{\left[ x+1 \right]}^{2}}+{{\left[ y-1 \right]}^{2}}=1.$

Giải:

 Đường tròn $\left[ C \right]$ có tâm $I\left[ 2;\,2 \right],$ bán kính $R=2.$

Suy ra phép vị tự ${{V}_{\left[ O;\,\frac{1}{2} \right]}}$ biến $\left[ C \right]$ thành $\left[ {{C}'} \right]$ tâm ${I}'\left[ 1;\,1 \right],$ bán kính ${R}'=1.$

Phép quay ${{Q}_{\left[ O;\,{{90}^{0}} \right]}}$ biến $\left[ {{C}'} \right]$ thành $\left[ {{C}''} \right]$ có tâm $I''\left[ -1;1 \right]$, bán kính $R''=R'=1.$ 

Vậy phương trình đường tròn $\left[ {{C}''} \right]$ là ${{\left[ x+1 \right]}^{2}}+{{\left[ y-1 \right]}^{2}}=1$.

Chọn D

Câu 6: Trong mặt phẳng tọa độ $Oxy$ cho hai điểm $A\left[ -\,2;\,-3 \right]$ và $B\left[ 4;\,1 \right].$ Phép đồng dạng tỉ số $k=\frac{1}{2}$ biến điểm $A$ thành ${A}',$ biến điểm $B$ thành ${B}'.$ Tính độ dài ${A}'{B}'.$

A.${A}'{B}'=\frac{\sqrt{52}}{2}.$                      B.${A}'{B}'=\sqrt{52}.$                            C.${A}'{B}'=\frac{\sqrt{50}}{2}.$                      D.${A}'{B}'=\sqrt{50}.$

Giải:

Phép đồng dạng tỉ số $k=\frac{1}{2}$ biến điểm $A$ thành ${A}',$ biến điểm $B$ thành ${B}'$ nên ta luôn có [theo định nghĩa] ${A}'{B}'=\frac{1}{2}AB=\frac{\sqrt{{{\left[ 4+2 \right]}^{2}}+{{\left[ 1+3 \right]}^{2}}}}{2}=\frac{\sqrt{52}}{2}.$

Chọn A

Câu 7: Trong mặt phẳng tọa độ $Oxy,$ cho hai đường tròn $\left[ C \right]$ và $\left[ {{C}'} \right]$ có phương trình ${{x}^{2}}+{{y}^{2}}-4y-5=0$ và ${{x}^{2}}+{{y}^{2}}-2x+2y-14=0.$ Gọi $\left[ {{C}'} \right]$ là ảnh của $\left[ C \right]$ qua phép đồng dạng tỉ số $k,$ khi đó giá trị $k$ là:

A. $k=\frac{4}{3}.$                          B.$k=\frac{3}{4}.$                           C.$k=\frac{9}{16}.$                         D.$k=\frac{16}{9}.$

Giải:

Đường tròn $\left[ C \right]$ có bán kính $R=3.$ Đường tròn $\left[ {{C}'} \right]$ có bán kính ${R}'=4.$

Suy ra tỉ số đồng dạng $k=\frac{R'}{R}=\frac{4}{3}.$

Chọn A

C. Bài tập tự luyện

Câu 1: Mọi phép dời hình cũng là phép đồng dạng với tỉ số $k$ bằng:

A. $k=1.$          B. $k=-1.$         C. $k=0.$           D. $k=2.$

Câu 2:  Mệnh đề nào sau đây là sai?

A. Phép dời hình là phép đồng dạng tỉ số $k=1.$   

B. Phép đồng dạng biến đường thẳng thành đường thẳng song song hoặc trùng với nó. 

C. Phép vị tự tỉ số $k$ là phép đồng dạng tỉ số $\left| k \right|.$        

D. Phép đồng dạng bảo toàn độ lớn góc.

Câu 3: Mệnh đề nào sau đây là sai?

A. Hai đường thẳng bất kì luôn đồng dạng.            

B. Hai đường tròn bất kì luôn đồng dạng.

C. Hai hình vuông bất kì luôn đồng dạng.              

D. Hai hình chữ nhật bất kì luôn đồng dạng.             

Câu 4: Trong các mệnh đề sau, mệnh đề nào sai?

A. Phép dời hình là phép đồng dạng                    

B. Phép vị tự là phép đồng dạng

C. Phép đồng dạng là một phép dời hình             

D. Có phép vị tự không phải là một phép dời hình

Câu 5: Trong các mệnh đề sau đây mệnh đề nào sai?

A. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó

B. Phép đối xứng trục biến đường thẳng thành đường thẳng song song hoặc trùng với nó

C. Phép đối xứng tâm  biến đường thẳng thành đường thẳng song song hoặc trùng với nó

D. Phép đối vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó

Câu 6: Trong các mệnh đề sau, mệnh đề nào sai?

A. Có một phép tịnh tiến biến mọi điểm thành chính nó

B. Có một phép đối xứng trục biến mọi điểm thành chính nó

C. Có một phép quay biến mọi điểm thành chính nó

D. Có một phép vị tự biến mọi điểm thành chính nó

Câu 7: Trong mp Oxy, [C]${{[x-2]}^{2}}+{{[y-2]}^{2}}=4$. Hỏi phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự  tâm O, tỉ số k=1/2 và phép quay tâm O góc 90o biến  [C] thành đường tròn nào có phương trình sau đây?

Câu 8: Cho đường tròn [O;R]. Tìm mệnh đề sai?

A. Có phép tịnh tiến biến [O;R] thành chính nó 

B. Có hai phép vị tự biến [O;R]thành chính nó

C. Có phép đối xứng trục biến [O;R] thành chính nó    

D. Trong mệnh đề trên có ít nhất một mệnh đề sai

Câu 9: Trong các mệnh đề sau, mệnh đề nào SAI?

A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó.

B. Phép vị tự biến đoạn thẳng thành đoạn thẳng bằng nó.

C. Phép quay biến đoạn thẳng thành đoạn thẳng bằng nó.

D. Phép đối xứng trục biến đoạn thẳng thành đoạn thẳng bằng nó

Câu 10:  Trong các mệnh đề sau, mệnh đề nào đúng?

A. Phép vị tự biến mỗi đường thẳng \[\left[ d \right]\] thành đường thẳng song song với \[\left[ d \right]\].

B. Phép quay biến mỗi đường thẳng \[\left[ d \right]\] thành đường thẳng cắt \[\left[ d \right]\].

C. Phép tịnh tiến biến mỗi đường thẳng \[\left[ d \right]\] thành chính nó.

D. Phép đối xứng tâm biến mỗi đường thẳng \[\left[ d \right]\] thành đường thẳng \[\left[ d' \right]\] // hoặc trùng với \[\left[ d \right]\].

Đáp án bài tập tự luyện

1

2

3

4

5

6

7

8

9

10

A

B

D

C

A

A

B

C

C

B

Bài viết gợi ý:

Video liên quan

Chủ Đề