B.a h.g.p r.l là gì

1. Barnett R. Obesity. The Lancet. 2017;389[10069]:591. [Google Scholar]

2. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378[9793]:815–25. [PubMed] [Google Scholar]

3. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell metabolism. 2013;17[1]:20–33. [PMC free article] [PubMed] [Google Scholar]

4. Holman RR. Type 2 diabetes mellitus in 2012: Optimal management of T2DM remains elusive. Nat Rev Endocrinol. 2013;9[2]:67–8. [PubMed] [Google Scholar]

5. Bhupathiraju SN, Hu FB. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ Res. 2016;118[11]:1723–35. [PMC free article] [PubMed] [Google Scholar]

6. Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. The Lancet Diabetes & Endocrinology. 2014;2[11]:911–22. [PubMed] [Google Scholar]

7. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985;315[6016]:239–42. [PubMed] [Google Scholar]

8. Guo H, German P, Bai S, Barnes S, Guo W, Qi X. et al. The PI3K/AKT Pathway and Renal Cell Carcinoma. Journal of Genetics and Genomics. 2015;42[7]:343–53. [PMC free article] [PubMed] [Google Scholar]

9. Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascular pharmacology. 2015;74:38–48. [PMC free article] [PubMed] [Google Scholar]

10. David A. Fruman REM, and Lewis C. Cantley. PHOSPHOINOSITIDE KINASES. Annu Rev Biochem; 1998. pp. 481–507. [PubMed] [Google Scholar]

11. Graupera M, Potente M. Regulation of angiogenesis by PI3K signaling networks. Experimental cell research. 2013;319[9]:1348–55. [PubMed] [Google Scholar]

12. Burke JE, Williams RL. Synergy in activating class I PI3Ks. Trends in biochemical sciences. 2015;40[2]:88–100. [PubMed] [Google Scholar]

13. Castillo SD, Vanhaesebroeck B, Sebire NJ. Phosphoinositide 3-kinase: a new kid on the block in vascular anomalies. The Journal of pathology. 2016;240[4]:387–96. [PubMed] [Google Scholar]

14. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nature reviews Molecular cell biology. 2010;11[5]:329–41. [PubMed] [Google Scholar]

15. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275[5300]:665–8. [PubMed] [Google Scholar]

16. Hawkins PT, Stephens LR. Emerging evidence of signalling roles for PI[3,4]P-2 in Class I and II PI3K-regulated pathways. Biochemical Society Transactions. 2016;44:307–14. [PubMed] [Google Scholar]

17. Zhang J, Yu XH, Yan YG, Wang C, Wang WJ. PI3K/Akt signaling in osteosarcoma. Clinica chimica acta; international journal of clinical chemistry. 2015;444:182–92. [PubMed] [Google Scholar]

18. Krycer JR, Sharpe LJ, Luu W, Brown AJ. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab. 2010;21[5]:268–76. [PubMed] [Google Scholar]

19. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Current Biology. 1997;7[4]:261–9. [PubMed] [Google Scholar]

20. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307[5712]:1098–101. [PubMed] [Google Scholar]

21. Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J. et al. PtdIns[3,4,5]P3-Dependent Activation of the mTORC2 Kinase Complex. Cancer discovery. 2015;5[11]:1194–209. [PMC free article] [PubMed] [Google Scholar]

23. Andjelkovic M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase [RAC-PK/PKB] promoted by serum and protein phosphatase inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 1996;93[12]:5699–704. [PMC free article] [PubMed] [Google Scholar]

24. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18[1]:13–24. [PubMed] [Google Scholar]

25. Jethwa N, Chung GHC, Lete MG, Alonso A, Byrne RD, Calleja V. et al. Endomembrane PtdIns[3,4,5]P-3 activates the PI3K-Akt pathway. Journal Of Cell Science. 2015;128[18]:3456–65. [PubMed] [Google Scholar]

26. Braccini L, Ciraolo E, Campa CC, Perino A, Longo DL, Tibolla G. et al. PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400. [PMC free article] [PubMed] [Google Scholar]

27. Mahajan K, Mahajan NP. PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics. J Cell Physiol. 2012;227[9]:3178–84. [PMC free article] [PubMed] [Google Scholar]

28. Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS letters. 1996;399[3]:333–8. [PubMed] [Google Scholar]

29. Govers R. Cellular regulation of glucose uptake by glucose transporter GLUT4. Advances in clinical chemistry. 2014;66:173–240. [PubMed] [Google Scholar]

31. Kousteni S. FoxO1, the transcriptional chief of staff of energy metabolism. Bone. 2012;50[2]:437–43. [PMC free article] [PubMed] [Google Scholar]

32. Li X, Monks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007;447[7147]:1012–6. [PubMed] [Google Scholar]

33. Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends in biochemical sciences. 2014;39[4]:159–69. [PMC free article] [PubMed] [Google Scholar]

34. Hay N. Interplay between FOXO, TOR, and Akt. Biochimica et Biophysica Acta [BBA] - Molecular Cell Research. 2011;1813[11]:1965–70. [PMC free article] [PubMed] [Google Scholar]

35. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378[6559]:785–9. [PubMed] [Google Scholar]

36. Kraegen EW, James DE, Jenkins AB, Chisholm DJ. Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol. 1985;248[3 Pt 1]:E353–62. [PubMed] [Google Scholar]

37. DE NYRGLJJ. Rapid activation of Akt2 is sufficient to stimulate GLUT4translocation in 3T3-L1 adipocytes. Cell metabolism. 2008;7[4]:348–23. [PubMed] [Google Scholar]

38. Mueckler BTM. Glucose transporters in the 21st Century. American Journal of Physiology: Endocrinology and Metabolism. 2010;298[2]:E141–E5. [PMC free article] [PubMed] [Google Scholar]

39. Cesar Osorio-Fuentealba, Ariel E. Contreras-Ferrat, Altamirano. F. Electrical Stimuli Release ATP to Increase GLUT4 Translocation and Glucose Uptake via PI3Kg-Akt-AS160 in Skeletal Muscle Cells. Diabetes. 2013;62[5]:1519–26. [PMC free article] [PubMed] [Google Scholar]

40. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM. et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. The Journal of biological chemistry. 1998;273[9]:5315–22. [PubMed] [Google Scholar]

41. Wan M, Leavens KF, Hunter RW, Koren S, von Wilamowitz-Moellendorff A, Lu M. et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell metabolism. 2013;18[1]:99–105. [PMC free article] [PubMed] [Google Scholar]

42. Vary TCJ, Leonard S.;Kimball, Scot R. Insulin fails to stimulate muscle protein synthesis in sepsis despite unimpaired signaling to 4E-BP1 and S6K1. American Journal of Physiology: Endocrinology and Metabolism. 2001;44[5]:1045–53. [PubMed] [Google Scholar]

43. Liu Y, Vertommen D, Rider MH, Lai YC. Mammalian target of rapamycin-independent S6K1 and 4E-BP1 phosphorylation during contraction in rat skeletal muscle. Cellular signalling. 2013;25[9]:1877–86. [PubMed] [Google Scholar]

44. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149[2]:274–93. [PMC free article] [PubMed] [Google Scholar]

45. Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology. 2017;104[4]:364–81. [PubMed] [Google Scholar]

46. Kraegen EW, Cooney GJ. Free fatty acids and skeletal muscle insulin resistance. Current opinion in lipidology. 2008;19[3]:235–41. [PubMed] [Google Scholar]

47. Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev. 2010;31[1]:25–51. [PMC free article] [PubMed] [Google Scholar]

48. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nature medicine. 2010;16[4]:400–2. [PMC free article] [PubMed] [Google Scholar]

49. Schrauwen P. High-fat diet, muscular lipotoxicity and insulin resistance. Proc Nutr Soc. 2007;66[1]:33–41. [PubMed] [Google Scholar]

50. Jazet IM, Schaart G, Gastaldelli A, Ferrannini E, Hesselink MK, Schrauwen P. et al. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia. 2008;51[2]:309–19. [PubMed] [Google Scholar]

51. Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007;117[6]:1690–8. [PMC free article] [PubMed] [Google Scholar]

52. Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA. Lipid mediators of insulin resistance. Nutr Rev. 2007;65[6 Pt 2]:S39–46. [PubMed] [Google Scholar]

53. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307[5708]:384–7. [PubMed] [Google Scholar]

54. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell metabolism. 2007;5[3]:167–79. [PubMed] [Google Scholar]

55. Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nature Reviews Endocrinology. 2016;12[11]:633–45. [PubMed] [Google Scholar]

57. Kubota T, Kubota N, Kadowaki T. Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell metabolism. 2017;25[4]:797–810. [PubMed] [Google Scholar]

58. Zhang J, Liu F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life. 2014;66[7]:485–95. [PMC free article] [PubMed] [Google Scholar]

59. Denechaud PD, Bossard P, Lobaccaro JM, Millatt L, Staels B, Girard J. et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest. 2008;118[3]:956–64. [PMC free article] [PubMed] [Google Scholar]

60. Haas Joel T, Miao J, Chanda D, Wang Y, Zhao E, Haas Mary E. et al. Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression. Cell metabolism. 2012;15[6]:873–84. [PMC free article] [PubMed] [Google Scholar]

61. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39[2]:171–83. [PMC free article] [PubMed] [Google Scholar]

62. Chakrabarti P, Kandror KV. FoxO1 controls insulin-dependent adipose triglyceride lipase [ATGL] expression and lipolysis in adipocytes. The Journal of biological chemistry. 2009;284[20]:13296–300. [PMC free article] [PubMed] [Google Scholar]

63. Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J. et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24[43]:6465–81. [PubMed] [Google Scholar]

64. Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell metabolism. 2007;5[1]:73–9. [PMC free article] [PubMed] [Google Scholar]

65. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146[3]:408–20. [PMC free article] [PubMed] [Google Scholar]

66. Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107[8]:3441–6. [PMC free article] [PubMed] [Google Scholar]

67. Owen JL, Zhang Y, Bae SH, Farooqi MS, Liang G, Hammer RE. et al. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proceedings of the National Academy of Sciences of the United States of America. 2012;109[40]:16184–9. [PMC free article] [PubMed] [Google Scholar]

68. Bae EJ, Xu J, Oh DY, Bandyopadhyay G, Lagakos WS, Keshwani M. et al. Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. The Journal of biological chemistry. 2012;287[22]:18769–80. [PMC free article] [PubMed] [Google Scholar]

69. Yecies Jessica L, Zhang Hui H, Menon S, Liu S, Yecies D, Lipovsky Alex I. et al. Akt Stimulates Hepatic SREBP1c and Lipogenesis through Parallel mTORC1-Dependent and Independent Pathways. Cell metabolism. 2011;14[2]:280. [PMC free article] [PubMed] [Google Scholar]

70. Bengoechea-Alonso MT, Ericsson J. A phosphorylation cascade controls the degradation of active SREBP1. The Journal of biological chemistry. 2009;284[9]:5885–95. [PubMed] [Google Scholar]

71. Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell metabolism. 2011;13[3]:249–59. [PMC free article] [PubMed] [Google Scholar]

72. Choi SM, Tucker DF, Gross DN, Easton RM, DiPilato LM, Dean AS. et al. Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Molecular and cellular biology. 2010;30[21]:5009–20. [PMC free article] [PubMed] [Google Scholar]

73. Ahmad F, Lindh R, Tang Y, Ruishalme I, Ost A, Sahachartsiri B. et al. Differential regulation of adipocyte PDE3B in distinct membrane compartments by insulin and the beta3-adrenergic receptor agonist CL316243: effects of caveolin-1 knockdown on formation/maintenance of macromolecular signalling complexes. The Biochemical journal. 2009;424[3]:399–410. [PMC free article] [PubMed] [Google Scholar]

74. Vazirani RP VA, Sadacca LA, Buckman MS, Picatoste B, Beg M. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. diabetes. 2016;65:1577–89. [PMC free article] [PubMed] [Google Scholar]

75. Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A. From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis. 2009;19[2]:146–52. [PubMed] [Google Scholar]

76. Ranjit S, Boutet E, Gandhi P, Prot M, Tamori Y, Chawla A. et al. Regulation of fat specific protein 27 by isoproterenol and TNF-alpha to control lipolysis in murine adipocytes. J Lipid Res. 2011;52[2]:221–36. [PMC free article] [PubMed] [Google Scholar]

77. Amrani A, Jafarian-Tehrani M, Mormede P, Durant S, Pleau JM, Haour F. et al. Interleukin-1 effect on glycemia in the non-obese diabetic mouse at the pre-diabetic stage. The Journal of endocrinology. 1996;148[1]:139–48. [PubMed] [Google Scholar]

78. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. Journal Of Cell Biology. 2015;208[5]:501–12. [PMC free article] [PubMed] [Google Scholar]

79. Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U. Insulin resistance and impaired adipogenesis. Trends In Endocrinology And Metabolism. 2015;26[4]:193–200. [PubMed] [Google Scholar]

80. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J. et al. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology. Diabetes. 2010;59[1]:105–9. [PMC free article] [PubMed] [Google Scholar]

81. Eileen L. Whiteman, Han Cho, Birnbaum MJ. Role of Akt protein kinase B in metabolism. TRENDS in Endocrinology & Metabolism. 2002;13[10]:444–51. [PubMed] [Google Scholar]

82. Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu W, Li C. et al. Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell metabolism. 2016;23[6]:1154–66. [PMC free article] [PubMed] [Google Scholar]

83. Kubota N, Kubota T, Itoh S, Kumagai H, Kozono H, Takamoto I. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell metabolism. 2008;8[1]:49–64. [PubMed] [Google Scholar]

84. Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S. et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. The Journal of biological chemistry. 2000;275[46]:36324–33. [PubMed] [Google Scholar]

85. Lu MJ, Wan M, Leavens KF, Chu QW, Monks BR, Fernandez S. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature medicine. 2012;18[3]:388–U254. [PMC free article] [PubMed] [Google Scholar]

86. Dong XC, Copps KD, Guo S, Li Y, Kollipara R, DePinho RA. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell metabolism. 2008;8[1]:65–76. [PMC free article] [PubMed] [Google Scholar]

87. Titchenell PM, Chu Q, Monks BR, Birnbaum MJ. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nature Communications. 2015;6:7078. [PMC free article] [PubMed] [Google Scholar]

88. Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol Metab. 2017;28[7]:497–505. [PMC free article] [PubMed] [Google Scholar]

89. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J. et al. Hypothalamic K[ATP] channels control hepatic glucose production. Nature. 2005;434[7036]:1026–31. [PubMed] [Google Scholar]

90. Myers MG Jr, Olson DP. Central nervous system control of metabolism. Nature. 2012;491[7424]:357–63. [PubMed] [Google Scholar]

91. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell metabolism. 2007;5[6]:438–49. [PubMed] [Google Scholar]

92. Ramnanan CJ, Edgerton DS, Cherrington AD. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell metabolism. 2012;15[5]:656–64. [PMC free article] [PubMed] [Google Scholar]

93. Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD. et al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest. 2011;121[9]:3713–23. [PMC free article] [PubMed] [Google Scholar]

94. Scherer T, O'Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C. et al. Brain Insulin Controls Adipose Tissue Lipolysis and Lipogenesis. Cell metabolism. 2011;13[2]:183–94. [PMC free article] [PubMed] [Google Scholar]

95. Paranjape SA, Chan O, Zhu W, Horblitt AM, McNay EC, Cresswell JA. et al. Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes. 2010;59[6]:1521–7. [PMC free article] [PubMed] [Google Scholar]

96. Lefebvre PJ, Paquot N, Scheen AJ. Inhibiting or antagonizing glucagon: making progress in diabetes care. Diabetes Obes Metab. 2015;17[8]:720–5. [PubMed] [Google Scholar]

97. Li S, Ogawa W, Emi A, Hayashi K, Senga Y, Nomura K. et al. Role of S6K1 in regulation of SREBP1c expression in the liver. Biochem Biophys Res Commun. 2011;412[2]:197–202. [PubMed] [Google Scholar]

98. Yecies Jessica L, Zhang Hui H, Menon S, Liu S, Yecies D, Lipovsky Alex I. et al. Akt Stimulates Hepatic SREBP1c and Lipogenesis through Parallel mTORC1-Dependent and Independent Pathways. Cell metabolism. 2011;14[1]:21–32. [PMC free article] [PubMed] [Google Scholar]

99. Wan M, Leavens KF, Saleh D, Easton RM, Guertin DA, Peterson TR. et al. Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c. Cell metabolism. 2011;14[4]:516–27. [PMC free article] [PubMed] [Google Scholar]

100. Banks AS, Kim-Muller JY, Mastracci TL, Kofler NM, Qiang L, Haeusler RA. et al. Dissociation of the glucose and lipid regulatory functions of FoxO1 by targeted knockin of acetylation-defective alleles in mice. Cell metabolism. 2011;14[5]:587–97. [PMC free article] [PubMed] [Google Scholar]

101. Haeusler RA, Hartil K, Vaitheesvaran B, Arrieta-Cruz I, Knight CM, Cook JR. et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun. 2014;5:5190. [PMC free article] [PubMed] [Google Scholar]

102. Deng X, Zhang W, I OS, Williams JB, Dong Q, Park EA. et al. FoxO1 inhibits sterol regulatory element-binding protein-1c [SREBP-1c] gene expression via transcription factors Sp1 and SREBP-1c. The Journal of biological chemistry. 2012;287[24]:20132–43. [PMC free article] [PubMed] [Google Scholar]

103. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S. et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48[4]:634–42. [PubMed] [Google Scholar]

104. Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. Journal Of Clinical Endocrinology & Metabolism. 2006;91[12]:4753–61. [PubMed] [Google Scholar]

105. Qu X, Seale JP, Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats - effects of feeding. Journal Of Endocrinology. 1999;162[2]:207–14. [PubMed] [Google Scholar]

106. Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell. 2010;140[6]:900–17. [PMC free article] [PubMed] [Google Scholar]

107. Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science. 2015;349[6247]:500–6. [PMC free article] [PubMed] [Google Scholar]

108. Brown MS, Goldstein JL. Selective versus total insulin resistance: A pathogenic paradox. Cell metabolism. 2008;7[2]:95–6. [PubMed] [Google Scholar]

109. Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T. et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun. 2016;7:12977. [PMC free article] [PubMed] [Google Scholar]

110. Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci. 2016;73[7]:1457–77. [PubMed] [Google Scholar]

111. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012;13[12]:1079–86. [PMC free article] [PubMed] [Google Scholar]

112. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391[6670]:900–4. [PubMed] [Google Scholar]

113. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 2008;118[5]:1796–805. [PMC free article] [PubMed] [Google Scholar]

114. Morrison CD, Morton GJ, Niswender KD, Gelling RW, Schwartz MW. Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. Am J Physiol Endocrinol Metab. 2005;289[6]:E1051–7. [PubMed] [Google Scholar]

115. Kim KW, Donato J Jr, Berglund ED, Choi YH, Kohno D, Elias CF. et al. FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Invest. 2012;122[7]:2578–89. [PMC free article] [PubMed] [Google Scholar]

116. Kitamura T, Feng Y, Kitamura YI, Chua SC Jr, Xu AW, Barsh GS. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature medicine. 2006;12[5]:534–40. [PubMed] [Google Scholar]

117. Ren H, Orozco IJ, Su Y, Suyama S, Gutierrez-Juarez R, Horvath TL. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell. 2012;149[6]:1314–26. [PMC free article] [PubMed] [Google Scholar]

118. Hongxia Ren JRC, Ning Kon, Domenico Accili. Gpr17 in AgRP Neurons Regulates Feeding and Sensitivity to Insulin and Leptin. Diabetes. 2015;64:3670–9. [PMC free article] [PubMed] [Google Scholar]

119. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E. et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382[6588]:250–2. [PubMed] [Google Scholar]

120. Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI. et al. Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell metabolism. 2009;10[5]:343–54. [PMC free article] [PubMed] [Google Scholar]

121. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25[6]:903–15. [PubMed] [Google Scholar]

122. Mori H, Inoki K, Munzberg H, Opland D, Faouzi M, Villanueva EC. et al. Critical role for hypothalamic mTOR activity in energy balance. Cell metabolism. 2009;9[4]:362–74. [PMC free article] [PubMed] [Google Scholar]

123. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell metabolism. 2013;18[1]:29–42. [PubMed] [Google Scholar]

124. Albert V, Cornu M, Hall MN. mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior. Biochem Biophys Res Commun. 2015;464[2]:480–6. [PubMed] [Google Scholar]

125. Miller AM, Brestoff JR, Phelps CB, Berk EZ, Reynolds THt. Rapamycin does not improve insulin sensitivity despite elevated mammalian target of rapamycin complex 1 activity in muscles of ob/ob mice. Am J Physiol Regul Integr Comp Physiol. 2008;295[5]:R1431–8. [PMC free article] [PubMed] [Google Scholar]

126. Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res. 2010;209[1]:1–12. [PubMed] [Google Scholar]

127. Haissaguerre M, Saucisse N, Cota D. Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol. 2014;397[1-2]:67–77. [PubMed] [Google Scholar]

128. Smith Mark A, Katsouri L, Irvine Elaine E, Hankir Mohammed K, Pedroni Silvia MA, Voshol Peter J. et al. Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice. Cell Reports. 2015;11[3]:335–43. [PMC free article] [PubMed] [Google Scholar]

129. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell metabolism. 2010;11[4]:286–97. [PMC free article] [PubMed] [Google Scholar]

130. Steculorum SM, Ruud J, Karakasilioti I, Backes H, Engstrom Ruud L, Timper K. et al. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue. Cell. 2016;165[1]:125–38. [PMC free article] [PubMed] [Google Scholar]

131. Shi X, Zhou F, Li X, Chang B, Li D, Wang Y. et al. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell metabolism. 2013;18[1]:86–98. [PMC free article] [PubMed] [Google Scholar]

132. Carvalheira JB, Ribeiro EB, Araujo EP, Guimaraes RB, Telles MM, Torsoni M. et al. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia. 2003;46[12]:1629–40. [PubMed] [Google Scholar]

133. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Haring HU. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev. 2016;96[4]:1169–209. [PubMed] [Google Scholar]

134. Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell metabolism. 2012;15[5]:646–55. [PubMed] [Google Scholar]

135. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S. et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119[9]:2577–89. [PMC free article] [PubMed] [Google Scholar]

136. Iskandar K, Cao Y, Hayashi Y, Nakata M, Takano E, Yada T. et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab. 2010;298[4]:E787–98. [PubMed] [Google Scholar]

137. Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM. et al. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest. 2008;118[8]:2959–68. [PMC free article] [PubMed] [Google Scholar]

138. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431[7005]:200–5. [PubMed] [Google Scholar]

139. Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R. et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes. 2000;49[11]:1880–9. [PubMed] [Google Scholar]

140. Cantley J, Choudhury AI, Asare-Anane H, Selman C, Lingard S, Heffron H. et al. Pancreatic deletion of insulin receptor substrate 2 reduces beta and alpha cell mass and impairs glucose homeostasis in mice. Diabetologia. 2007;50[6]:1248–56. [PubMed] [Google Scholar]

141. RN; K, JC; B, JN; W, C; P, MA; M, CR K. Tissue-Specific Knockout of the Insulin Receptor in Pancreatic b Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes. Cell. 1999;96[3]:329–39. [PubMed] [Google Scholar]

142. Yuval Dor JB, Olga I. Martinez & Douglas A. Melton. Adult pancreatic b-cells are formed by self-duplication rather than stem-cell differentiation. nature. 2004;429[6]:41–6. [PubMed] [Google Scholar]

143. Georgia S, Bhushan A. β cell replication is the primary mechanism for maintaining postnatal β cell mass. Journal of Clinical Investigation. 2004;114[7]:963–8. [PMC free article] [PubMed] [Google Scholar]

144. Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA. Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest. 2001;108[11]:1631–8. [PMC free article] [PubMed] [Google Scholar]

145. Bernal-Mizrachi E, Fatrai S, Johnson JD, Ohsugi M, Otani K, Han Z. et al. Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J Clin Invest. 2004;114[7]:928–36. [PMC free article] [PubMed] [Google Scholar]

146. Wang W, Liu Y, Chen Y, Cao C, Xiang Y, Zhang D. et al. Inhibition of Foxo1 mediates protective effects of ghrelin against lipotoxicity in MIN6 pancreatic beta-cells. Peptides. 2010;31[2]:307–14. [PubMed] [Google Scholar]

147. Wang HW, Mizuta M, Saitoh Y, Noma K, Ueno H, Nakazato M. Glucagon-like peptide-1 and candesartan additively improve glucolipotoxicity in pancreatic beta-cells. Metabolism. 2011;60[8]:1081–9. [PubMed] [Google Scholar]

148. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW. et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42[11]:1663–72. [PubMed] [Google Scholar]

149. Oliveira JM, Rebuffat SA, Gasa R, Gomis R. Targeting type 2 diabetes: lessons from a knockout model of insulin receptor substrate 2. Canadian journal of physiology and pharmacology. 2014;92[8]:613–20. [PubMed] [Google Scholar]

150. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444[7121]:840–6. [PubMed] [Google Scholar]

151. Dornan GL, Burke JE. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Frontiers in immunology. 2018;9:575. [PMC free article] [PubMed] [Google Scholar]

152. Ortega-Molina A, Lopez-Guadamillas E, Mattison JA, Mitchell SJ, Munoz-Martin M, Iglesias G. et al. Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell metabolism. 2015;21[4]:558–70. [PMC free article] [PubMed] [Google Scholar]

153. Wang C, Chi Y, Li J, Miao Y, Li S, Su W. et al. FAM3A activates PI3K p110alpha/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology. 2014;59[5]:1779–90. [PubMed] [Google Scholar]

154. Kuang JR, Zhang ZH, Leng WL, Lei XT, Liang ZW. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling. Mol Cell Endocrinol. 2017;447:106–15. [PubMed] [Google Scholar]

155. Wang C, Chen Z, Li S, Zhang Y, Jia S, Li J. et al. Hepatic overexpression of ATP synthase beta subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes. 2014;63[3]:947–59. [PubMed] [Google Scholar]

156. Chattopadhyay T, Singh RR, Gupta S, Surolia A. Bone morphogenetic protein-7 [BMP-7] augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway. BioFactors [Oxford, England] 2017;43[2]:195–209. [PubMed] [Google Scholar]

157. Mwangi S, Anitha M, Mallikarjun C, Ding X, Hara M, Parsadanian A. et al. Glial cell line-derived neurotrophic factor increases beta-cell mass and improves glucose tolerance. Gastroenterology. 2008;134[3]:727–37. [PMC free article] [PubMed] [Google Scholar]

158. Anitha M, Gondha C, Sutliff R, Parsadanian A, Mwangi S, Sitaraman SV. et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest. 2006;116[2]:344–56. [PMC free article] [PubMed] [Google Scholar]

159. Wang X, Hai CX. ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: is Nrf2 a potential target for the treatment? Mini reviews in medicinal chemistry. 2011;11[12]:1082–92. [PubMed] [Google Scholar]

160. Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L. et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci [Lond] 2015;129[10]:839–50. [PubMed] [Google Scholar]

161. Villani V, Milanesi A, Sedrakyan S, Da Sacco S, Angelow S, Conconi MT. et al. Amniotic fluid stem cells prevent beta-cell injury. Cytotherapy. 2014;16[1]:41–55. [PMC free article] [PubMed] [Google Scholar]

162. Zhuo S, Yang M, Zhao Y, Chen X, Zhang F, Li N. et al. MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis. Diabetes. 2016;65[11]:3276–88. [PubMed] [Google Scholar]

163. Kurano M, Hara M, Satoh H, Tsukamoto K. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis. Metabolism. 2015;64[5]:588–96. [PubMed] [Google Scholar]

164. Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW. et al. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell metabolism. 2012;16[3]:311–21. [PMC free article] [PubMed] [Google Scholar]

165. Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159[1]:122–33. [PMC free article] [PubMed] [Google Scholar]

166. Mottaghi S, Larijani B, Sharifi AM. Apelin 13: a novel approach to enhance efficacy of hypoxic preconditioned mesenchymal stem cells for cell therapy of diabetes. Medical hypotheses. 2012;79[6]:717–8. [PubMed] [Google Scholar]

167. MacAulay K, Woodgett JR. Targeting glycogen synthase kinase-3 [GSK-3] in the treatment of Type 2 diabetes. Expert opinion on therapeutic targets. 2008;12[10]:1265–74. [PMC free article] [PubMed] [Google Scholar]

168. Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L. et al. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway. Diabetes. 2017;66[7]:1819–32. [PubMed] [Google Scholar]

169. Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol. 2017;233[3]:R185–R98. [PubMed] [Google Scholar]

170. Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K. et al. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 2010;107[4]:476–84. [PMC free article] [PubMed] [Google Scholar]

171. Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P. et al. PTEN Regulates PI[3,4]P2 Signaling Downstream of Class I PI3K. Mol Cell. 2017;68[3]:566–80.e10. [PMC free article] [PubMed] [Google Scholar]

Chủ Đề