Phương trình nào là phương trình bậc nhất hai ẩn

a. Định nghĩa

Phương trình bậc nhất hai ẩn x và y là hệ thức dạng ax + by = c [1], trong đó a; b; c là các số đã biết; $a\neq0$           hoặc $b\neq0$

Ví dụ: Các phương trình 2x - y = 1; 3x + 4y = 0; 0x + 2y = 4; x + 0y = 5 là những phương trình bậc nhất hai ẩn

b. Nghiệm của phương trình bậc nhất hai ẩn

Trong phương trình [1] nếu giá trị của vế trái tại $x=x_0;y=y_0$                    bằng vế phải thì cặp số $[x_0;y_0]$                   được gọi là một nghiệm của phương trình [1]

Ví dụ: Cặp số [3; 4] là một nghiệm của phương trình 2x - y = 2 vì 2.3 - 4 =2

Chú ý: Trong mặt phẳng tọa độ Oxy, mỗi nghiệm của phương trình [1] được biểu diễn bởi 1 điểm. Nghiệm $[x_0;y_0]$         được biểu diễn bởi điểm có tọa độ $[x_0;y_0]$

c. Tập nghiệm của phương trình bậc nhất hai ẩn

- Phương trình bậc nhất hai ẩn ax + by = c [ $a\neq0$  hoặc $b\neq0$    ]   luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng ax + by = c, kí hiệu là [d]

- Nếu $a\neq0$           và $b\neq0$         thì đường thẳng [d] chính là đồ thị của hàm số bậc nhất $y=-\frac{a}{b}x+\frac{c}{b}$

- Nếu $a\neq0$           và b = 0 thì phương trình trở thành ax = c hay $x=\frac{c}{a}$               và đường thẳng [d] song song hoặc trùng với trục tung.

- Nếu a = 0 và $b\neq0$          thì phương trình trở thành by = c hay $y=\frac{c}{b}$                và đường thẳng [d] song song hoặc trùng với trục hoành

Ví dụ: Phương trình 3x + y = 5 luôn có vô số nghiệm. Tập nghiệm của phương trình này là $S=\left\{[x;5-3x]/ x\in R\right\}$

Phương trình 2x + 0y = 8 nghiệm đúng với mọi y và x = 4 nên nghiệm tổng quát của phương trình là $\begin{cases}x=4\\y\in R\end{cases}$

Phương trình 0x + 4y = 8 nghiệm đúng với mọi x và y = 2 nên nghiệm tổng quát của phương trình là $\begin{cases}x\in R\\y=2\end{cases}$

2. Hệ hai phương trình bậc nhất hai ẩn

a. Khái niệm

Cho hai phương trình bậc nhất hai ẩn ax + by = c và a'x + b'y = c'. Khi đó ta có hệ hai phương trình bậc nhất hai ẩn $\begin{cases}ax+by=c\\a’x+b’y=c’\end{cases}\,\,\,[I]\,\,\,[a^2+b^2\neq0;a’^2+b’^2\neq0]$

Nếu hai phương trình ấy có nghiệm chung $[x_0;y_0]$                 thì $[x_0;y_0]$           được gọi là một nghiệm của hệ [I]

Nếu hai phương trình đã cho không có nghiệm chung thì ta nói hệ [I] vô nghiệm.

Giải hệ phương trình là tìm tất cả các nghiệm [tìm tập nghiệm] của nó.

Ví dụ$\begin{cases}x+y =6\\2x-y=3\end{cases}$               là một hệ phương trình bậc nhất hai ẩn

Ta thấy cặp số [3; 3] là một nghiệm của phương trình trên vì $\begin{cases}3+3 =6\\2.3-3=3\end{cases}$

b. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn

Cho hệ phương trình $\begin{cases}ax+by=c\,\,\,[d]\\a’x+b’y=c’\,\,\,[d’]\end{cases}\,\,\,[I]\,\,\,[a^2+b^2\neq0;a’^2+b’^2\neq0]$

Nghiệm hệ phương trình [I] chính là số giao điểm của đường thẳng [d] và [d']

- Nếu [d] cắt [d'] thì $\frac{a}{a’}\neq\frac{b}{b’}$                   Khi đó hệ [I] có một nghiệm duy nhất

- Nếu [d] song song với [d'] thì $\frac{a}{a’}=\frac{b}{b’}\neq\frac{c}{c’}$                       Khi đó hệ [I] vô nghiệm

- Nếu [d] trùng với [d'] thì $\frac{a}{a’}=\frac{b}{b’}=\frac{c}{c’}$                               Khi đó hệ [I] có vô số nghiệm

Ví dụ 1: Xét hệ phương trình $\begin{cases}x+y=3\\x-2y=0\end{cases}$

Ta có: a = 1; b = 1; c = 3; a' = 1; b' = - 2; c' = 0

Khi đó $\frac{a}{a’}\neq\frac{b}{b’}$  nên hệ phương trình có nghiệm duy nhất.

Hình vẽ minh họa

\n \n

Ví dụ 2: Xét hệ phương trình $\begin{cases}3x-2y=-6\\3x-2y=3\end{cases}$

Ta có: a = 3; b = -2; c = -6; a' = 3; b' = -2; c = 3

Khi đó $\frac{a}{a’}=\frac{b}{b’}\neq\frac{c}{c’}$  nên hệ phương trình vô nghiệm

Hình vẽ minh họa

\n \n

Ví dụ 3. Xét hệ phương trình $\begin{cases}x-2y=-6\\-x+2y=6\end{cases}$

Ta có: a = 1; b = - 2; c = - 6; a' = -1; b' = 2; c' =6

Khi đó $\frac{a}{a’}=\frac{b}{b’}=\frac{c}{c’}$  nên hệ phương trình vô số nghiệm

c. Hệ phương trình tương đương

Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng tập nghiệm. Kí hiệu $\Leftrightarrow$

Ví dụ: $\begin{cases}2x+y=5\\x-2y=8\end{cases}\Leftrightarrow\begin{cases}2x+y=5\\3x-y=13\end{cases}$

1. Các kiến thức cần nhớ

Khái niệm phương trình bậc nhất hai ẩn

+] Phương trình bậc nhất hai ẩn là phương trình có dạng $ax + by = c$

Trong đó $a,b,c$  là những số cho trước $a \ne $$0$  hoặc $b \ne 0$ .

- Nếu các số thực ${x_0},\,{y_0}$ thỏa mãn $ax + by = c$ thì cặp số $[{x_0},\,{y_0}]$ được gọi là nghiệm của phương trình $ax + by = c$.

- Trong mặt phẳng tọa độ $Oxy$ , mỗi nghiệm $[{x_0},\,{y_0}]$ của phương trình $ax + by = c$ được biểu diễn bới điểm có tọa độ $[{x_0},\,{y_0}]$.

Tập nghiệm của phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn $ax + by = c$ luôn có vô số nghiệm.

Tập nghiệm của phương trình được biểu diễn bởi đường thẳng $d:ax + by = c.$

+] Nếu $a \ne 0$$b = 0$ thì phương trình có nghiệm  $\left\{ \begin{array}{l}x = \dfrac{c}{a}\\y \in R\end{array} \right.$

và đường thẳng $d$  song song hoặc trùng với trục tung.

+] Nếu $a = 0$$b \ne 0$ thì phương trình có nghiệm  $\left\{ \begin{array}{l}x \in R\\y = \dfrac{c}{b}\end{array} \right.$

và đường thẳng $d$  song song hoặc trùng với trục hoành.

+] Nếu $a \ne 0$$b \ne 0$ thì phương trình có nghiệm  $\left\{ \begin{array}{l}x \in R\\y =  - \dfrac{a}{b}x + \dfrac{c}{b}\end{array} \right.$

và đường thẳng $d$  là đồ thị hàm số $y =  - \dfrac{a}{b}x + \dfrac{c}{b}$

2. Các dạng toán thường gặp

Dạng 1: Tìm điều kiện của tham số để một cặp số cho trước là nghiệm của phương trình bậc nhất hai ẩn.

Phương pháp:

Nếu cặp số thực $[{x_0},\,{y_0}]$thỏa mãn $ax + by = c$ thì nó được gọi là nghiệm của phương trình $ax + by = c$.

Dạng 2: Viết công thức nghiệm tổng quát của phương trình bậc nhất hai ẩn. Biểu diễn tập nghiệm trên hệ trục tọa độ.

Phương pháp:

Xét phương trình bậc nhất hai ẩn $ax + by = c$.

1. Để viết công thức nghiệm tổng quát của phương trình, trước tiên ta biểu diễn $x$ theo $y$ [ hoặc $y$ theo $x$] rồi đưa ra công thức nghiệm tổng quát.

2. Để biểu diễn tập nghiệm của phương trình trên mặt phẳng tọa độ, ta vẽ đường thẳng d có phương trình $ax + by = c$.

Dạng 3: Tìm điều kiện của tham số để đường thẳng $ax + by = c$ thỏa mãn điều kiện cho trước

Phương pháp:

Ta có thể sử dụng một số lưu ý sau đây khi giải dạng toán này:

1. Nếu \[a \ne 0\] và \[b = 0\] thì phương trình đường thẳng $d: ax + by = c$ có dạng $d:x = \dfrac{c}{a}$.  Khi đó $d$ song song hoặc trùng với $Oy$ .

2. Nếu \[a = 0\] và \[b \ne 0\] thì phương trình đường thẳng $d: ax + by = c$ có dạng $d:y = \dfrac{c}{b}$.  Khi đó $d$ song song hoặc trùng với $Ox$ .

3. Đường thẳng $d:ax + by = c$ đi qua điểm $M[{x_0},\,{y_0}]$ khi và chỉ khi $a{x_0} + b{y_0} = c$.

Dạng 4: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn

Phương pháp:

Để tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn $ax + by = c$, ta làm như sau:

Cách 1:

Bước 1: Rút gọn phương trình, chú ý đến tính chia hết của các ẩnBước 2:  Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đối nhỏ [chẳng hạn $x$ ] theo ẩn kia.Bước 3:  Tách riêng giá trị nguyên ở biểu thức của $x$ Bước 4:  Đặt điều kiện để phân bố trong biểu thức của $x$ bằng một số nguyên \[t\], ta được một phương trình bậc nhất hai ẩn $y$ và \[t\]

-  Cứ tiếp tục như trên cho đến khi các ần đều được biểu thị dưới dạng một đa thức với các hệ số nguyên.

Video liên quan

Chủ Đề